On the numerical rank of radial basis function kernels in high dimension
نویسندگان
چکیده
Low-rank approximations are popular methods to reduce the high computational cost of algorithms involving large-scale kernel matrices. The success of low-rank methods hinges on the matrix rank, and in practice, these methods are effective even for high-dimensional datasets. The practical success has elicited the theoretical analysis of the function rank in this paper, which is an upper bound of the matrix rank. The concept of function rank will be introduced to define the number of terms in the minimal separate form of a kernel function. We consider radial basis functions (RBF) in particular, and approximate the RBF kernel with a low-rank representation that is a finite sum of separate products, and provide explicit upper bounds on the function rank and the L∞ error for such approximation. Our three main results are as follows. First, for a fixed precision, the function rank of RBFs, in the worst case, grows polynomially with the data dimension. Second, precise error bounds for the low-rank approximations in the L∞ norm are derived in terms of the function smoothness and the domain diameters. And last, a group pattern in the magnitude of singular values for RBF kernel matrices is observed and analyzed, and is explained by a grouping of the expansion terms in the kernel’s low-rank representation. Empirical results verify the theoretical results.
منابع مشابه
THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملA new trust-region algorithm based on radial basis function interpolation
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
متن کامل